
1

CSC 128
TOPIC 1 : INTRODUCTION TO COMPUTER,

PROGRAM AND PROGRAMMING LANGUAGE

By : MOHD SAIFULNIZAM ABU BAKAR

2

LEARNING
OUTCOME

At the end of this chapter, you should
be able to:

◼Understand the concepts and
importance of programs and
programming.

◼Differentiate between program,
compiler, interpreter and assembler.

◼Apply the steps in the program
development life cycle.

3

CHAPTER
OUTLINE

◼A Brief History of Programming Language

◼Introduction to Programming
• What is a computer program and

importance of computer programming
• Importance of good programs.
• Relationship between compilers,

interpreters, assemblers and programs
• C++ program structure

◼Program Development Life Cycle
• Problem solving phases; problem

definition, algorithm design and
implementation

• Analysis, design, coding, maintenance

4

INTRODUCTION

• Computers can be found anywhere from the size of a desktop
to smaller than the palm of one’s hand such as desktop
computers, notebooks, netbooks, tablet PCs and mobile
devices.

• Many kinds of applications or apps can be downloaded into the
tablet or smartphone.

5

INTRODUCTION

• There are many ways to develop these applications.

• Some websites provide templates to create apps quickly

• Users with programming knowledge can create their apps from
scratch.

• Examples of systems/apps developed using programming
language:
• Automated Teller Machine (ATM) systems,
• Student Information Systems
• Online Ticketing Systems

6

OVERVIEW OF COMPUTERS AND HISTORY OF
PROGRAMMING LANGUAGE

19th Century
first general purpose computing device.

20th Century
early analogue computers have been invented.

1936
• first freely programmable computers were developed.

1940s

• electronic programmable computers using vacuum tubes and transistors have been
created.

1950-1960s

• commercial computers, computer games and programming languages were
developed.

1975
• mainframes and supercomputers were available.

1981
• IBM introduced its personal computers

1983
• The first personal computer with a graphical user interface was introduced

HISTORY OF

COMPUTERS

7

BASIC OPERATION OF A COMPUTER

• A computer is a device that can process data.

• Data consists of raw facts or unprocessed information

• Input – accepts data from user
•Process – manipulate data
•Output – produce result
•Storage – store result

Basic operation of a computer

8

BASIC OPERATION OF A COMPUTER

• Computers are electronic devices capable of performing
computations and making logical decisions at speeds faster than
human beings.

Hardware Software

Computer Component

9

LANGUAGE OF A COMPUTER

• Computers can only understand machine language.

• Machine language is also called binary numbers or binary code,
which is a sequence of 0s and 1s.

• The digits 0 and 1 are called binary digits or bits.

• A sequence of 8 bits is called a byte.

10

LANGUAGE OF A COMPUTER

11

TYPES OF PROGRAMMING LANGUAGE

machine dependent

❑ language is
mnemonic

❑ use assembler as
translator to
translate to
machine language

❑ machine independent
❑ the instructions are quite English-

like
❑ use compiler/interpreter as

translator to translate to machine
language

❑ Example: JAVA, C++, COBOL

❑ Early computers
were
programmed in
machine language

12

TYPES OF PROGRAMMING LANGUAGE

• Example:

• To calculate the BMI of a user given the formula:

height(m) x (m)height

(kg)weight
 BMI =

100100 010001 // Load

100110 010010 // Multiply

100010 010011 // Store

13

TYPES OF PROGRAMMING LANGUAGE

14

C++RELATIONSHIP BETWEEN PROGRAMS, COMPILER,
INTERPRETER AND ASSEMBLER

15

DIFFERENCES BETWEEN
PROGRAMS AND PROGRAMMING

• A program is a set of instructions that tell the computer how to solve a
problem or perform a task.

• Programming is the process of designing and writing computer programs.
• A program is like a recipe. It contains a list of ingredients (variables) and a list

of directions (statements) that tell the computer what to do with the
variables.

• A program can be as short as one line of code, or as long as several million
lines of code.

• Computer programs guide the computer through orderly sets of actions
specified by the computer programmers.

• The programmer must decide what the programs need to do, develop the
logic of how to do it and write instructions for the computer in a
programming language that the computer can translate into its own language
and execute.

16

THE IMPORTANCE OF
COMPUTER PROGRAMMING

• Able to perform difficult tasks without making human-type errors such
as lack of focus, energy, attention or memory.

• Capable of performing extended tasks at greater serial speeds than
conscious human thoughts.

• Human brain cannot be duplicated or ‘re-booted’ like computers, and
has already achieved ‘optimization’ through design by evolution,
making it difficult to upgrade.

• Human brain does not physically integrate well, externally or internally
with current hardware and software.

• Non-existence of boredom in computers when performing repetitive
tasks allows jobs to be done faster and more efficiently.

17

THE IMPORTANCE OF WRITING
A GOOD PROGRAM

Names for variables, types and functions
• Variables and constants are storage locations in the computer’s memory that

match with associated names known as identifiers.

• The following are some standards that can be used when naming variables,
constants, types and functions:

1. Function names will start with a lowercase letter.
Example: double calculateBMI (double, double);

2. Variable names start with a lowercase letter and the length must not be
more than 40 characters.
Example: double weight, height;

3. Constant names can be all in capital letters.
Example: const int MAX_SIZE =10;

18

THE IMPORTANCE OF WRITING
A GOOD PROGRAM

Indentation styles and spacing

• In order to improve readability in programming, indentation can be used to
format the program source code.
• A text editor is used to create a program by following the rules or syntax

of different programming languages.

• Spaces can also be added in between sentences to make programs much more
readable.

• A new level of indentation should be used at every level of statement nesting in
the program.

• The minimum number of spaces at each indentation should be at least three.
• Many programmers use a tab mark (typically 8 spaces) which will be

easier when indenting source code.

19

THE IMPORTANCE OF WRITING
A GOOD PROGRAM

20

C++ PROGRAM STRUCTURE

21

C++ PROGRAM STRUCTURE

22

THE FLOW OF PROGRAM EXECUTION

23

COMMENTS

• Important in any program as they are very useful for documentation but it is not
compulsory to write comments in programs.
✓ Comments are not source code, thus they will not be read by the compiler.

• Can be written in any way, according to the programmers’ preferences

• Explain the purpose, parts of the program and keep notes regarding changes to
the source code

• Store programmers’ name for future reference.

24

PRE-PROCESSOR DIRECTIVE

• Also known as a header file in C++.

• It is a line of code that begins with the # symbol.

• Header files are not executable code lines but instructions to the compiler.

• Header files are usually included at the top of the program before the main
function.

• The most common and important header file is #include<iostream>.

• This header file tells the pre-processor to include the contents of the file
<iostream> which are the input and output operations (such as printing to
the screen).

25

FUNCTION

• Main Function

• Every C++ program contains one or more functions, but one of it must be named
as main .

• A function is a block of code that carries out specific tasks.

• Generally, a main function starts with the function type void or int before it is
followed by the word main and a pair of parentheses ().

• It is more advisable to write the function type int in the main function but the
word return 0 must be written at the end of the function before it is closed.

26

FUNCTION

• Braces

• Body of the main function which is enclosed in braces {}.

• Used to mark the beginning and end of blocks of code in any program.

• The open brace { is placed at the beginning of code after the main
function and the close brace } is used to show the closing of code.

• The code after the } will not be read/evaluated by the compiler.

27

FUNCTION

• Statement

• A function consists of a sequence of statements that perform the work
of the function.

• Every statement in C++ ends with a semicolon (;).

28

PROGRAM
DEVELOPMENT

LIFE CYCLE

◼The process of developing a program is

called program development.

◼The process associated with creating

successful application programs is called

the Program Development Life Cycle

(PDLC).

29

PROGRAM DEVELOPMENT LIFE CYCLE

Analysis Design
Implementation

/Coding
Testing/

Debugging
Maintenance

30

STEP 1 : ANALYSIS

• First step in the Program Development Life Cycle (PDLC).

• This process is done by reviewing the program specifications.

• Other criteria must also be identified, especially the data that will be
used as input, the process involved and the output that will be produced.

The equation BMI = weight (kg) / (height (m) x height (m))

can be written in C++ as: BMI = weight/pow(height,2);

31

STEP 1 : ANALYSIS

• Done by reviewing the program specifications.
– Eliminate ambiguities in the problem statement.
– Other criteria must be identified especially the data that will be

used as input, process involve and output that will be produced.

• Indicating what the new system should do.

• In this step, the objectives, outputs, inputs, and processing requirements
are determined.

• The program objectives are the problems that you are trying to solve.

32

STEP 1 : ANALYSIS

• Write a program to calculate the bmi of a user
Objective :
- To calculate the bmi of a user
Output :
- bmi
Input :
- weight , height
Process :
- Declare -> double bmi, weight, height
- Calculate -> bmi= weight/pow(height,2)

Example of Problem Solving Exercise

The equation
BMI = weight (kg) / (height (m) x height (m))

can be written in C++ as:
BMI = weight/pow(height,2);

33

STEP 2 : DESIGN

• A programmer needs to develop a series of steps with logical order,
which when applied would produce the output of the problem.

• A solution is created using a structured programming technique known
as algorithm, which consists of pseudocode and flowchart.
o A procedure or formula for solving a problem.
o A step-by-step problem solving process where the result is

attained in a limited amount of time.

34

STEP 2 : DESIGN

• A step-by-step problem solving process in which a solution is arrived at a
finite amount of time.

• A sequence of a finite number of steps arranged in a specific logical
order which when executed will produce the solution for that problem.

• An algorithm must satisfy some requirements which are:
– Unambiguousness (clear)
– Generality (unspecific)
– Correctness
– Finiteness (limitation)

Algorithm

35

STEP 2 : DESIGN

• Before an algorithm is created, the three types of control
structure should be understood first.

• A control structure is a pattern to control the flow of a program
module.

36

STEP 2 : DESIGN

Algorithm

Pseudo code Flowchart

37

STEP 2 : DESIGN –PSEUDO CODE

• A semiformal, English-like language with a limited vocabulary
used to design and describe algorithms.

• Every statement in pseudocode involves keywords which define
the process and operands.

• Each pseudocode statement should be written in a separate line.

38

STEP 2 : DESIGN –PSEUDO CODE

39

STEP 2 : DESIGN –FLOW CHART

• A graphic presentation of the detailed logical sequence of steps
needed to solve programming problems.

• Uses geometric symbols where different symbols are used to
represent different actions such as start/stop, decision,
input/output, processing and looping.

• Similar to pseudocode, keywords are written in uppercase, while
variable and constant names as well as operations for the
statements are written in lower case.

40

STEP 2 : DESIGN –FLOW CHART

41

STEP 2 : DESIGN –FLOW CHART

42

STEP 2 : DESIGN –FLOW CHART

43

STEP 2 : DESIGN –FLOW CHART

calculate ()

44

STEP 2 : DESIGN –FLOW CHART

45

STEP 3 : IMPLEMENTATION/CODING

• The pseudocode and flow chart which have been done in the
design step will be converted into a program by using certain
programming languages such as BASIC, JAVA, C or C++.

• This step solves the problem by enabling the user to start writing
the programs.

46

STEP 3 : IMPLEMENTATION/CODING

• Coding is the actual process of creating a program in a
programming language.

• The coded program is referred to as source code.
o Must follow certain rules which are called syntax.
o Must then be saved as a program which has the extension ‘.cpp’.

• To be executed, the program is converted by the computer into
object code using a special program or translator such as a
compiler or interpreter.

47

STEP 4 : TESTING/DEBUGGING

• The step for checking and verifying the correctness of the
program.

• The process of making sure a program is free of errors or ‘bugs’ is
called debugging.

• Preliminary debugging begins after the program has been entered
into the computer system.

48

STEP 5 : MAINTENANCE

• Last step in the Program Development Life Cycle (PDLC).

• Essentially, every program, if it is to last a long time, requires
ongoing maintenance.

• A process of updating software for any changes, corrections,
additions, moving to a different computing platform and others
so that it continues to be useful.

• A costly process.

• Can be very useful especially on extending the life of a program.

49

EXERCISE

50

QUESTION 1

• Write a program to calculate pressure using the formula given.

ANALYSIS

ANALYSIS

OUTPUT

INPUT

PROCESS

51

QUESTION 1

• Write a program to calculate pressure using the formula given.

PSEUDOCODE
BEGIN

DECLARE double P, Patm , Hpg

READ/GET Patm, Hpg

COMPUTE/CALCULATE P = Patm + Hpg

PRINT/DISPLAY P

END

52

QUESTION 1

• Write a program to calculate pressure using the formula given.

FLOW CHART START

DECLARE

double P, Patm , Hpg

DISPLAY P

END

CALCULATE P=Patm + Hpg

GET Patm, Hpg

53

QUESTION 2

• Write the flowchart for the pseudocode given below:

START

DECLARE

int side1, side2, area

DISPLAY area

END

CALCULATE area = side1 * side2

GET side1, side2

54

QUESTION 3

• Write pseudocode for the flowchart given below:

BEGIN

DECLARE char Name[50];

double Hours, Rate, Pay

INPUT Name, Hours, Rate

CALCULATE Pay = Hours * Rate

DISPLAY Name, Pay

END

55

QUESTION 4

• Draw a flowchart based on the pseudocode given below:

BEGIN
DECLARE double b,h ,A
GET b,h
COMPUTE A=b*h
PRINT A,b,h
END

(Hint: A-Area of parallelogram, b-base,h-height)
Formula: A=b*h

56

QUESTION 4

BEGIN

DECLARE double b,h ,A

GET b,h

COMPUTE A=b*h

PRINT A,b,h

END

GET b,h

COMPUTE

A = b * h

PRINT A,b,h

DECLARE double b, h, A

BEGIN

END

57

QUESTION 5

A retail store grants its customers a maximum amount of credit.

Each customer’s available credit is his or her maximum amount of

credit minus the amount of credit used. Write a pseudo code and

flowchart algorithm for a program that asks for a customer’s

maximum amount of credit and amount of credit used. The program

should then display the customer’s available credit.

58

QUESTION 5

A retail store grants its customers a maximum amount of credit. Each customer’s
available credit is his or her maximum amount of credit minus the amount of credit
used. Write a pseudo code and flowchart algorithm for a program that asks for a
customer’s maximum amount of credit and amount of credit used. The program
should then display the customer’s available credit.

Answer:

Program Analysis / Specification

OUTPUT INPUT PROCESS

balance maxAmount, amountUsed Balance=maxAmount-

amountUsed

59

QUESTION 5

BEGIN

DECLARE double balance, maxAmount, amountUsed

READ maxAmount,amountUsed

CALCULATE balance = maxAmount – amountUsed

DISPLAY balance

END

READ maxAmount,

amountUsed

CALCULATE

balance = maxAmount - amountUsed

DISPLAY balance

DECLARE double balance, maxAmount,

amountUsed

BEGIN

END

FLOW CHARTPSEUDO CODE

	Slide 1: Csc 128
	Slide 2: Learning outcome
	Slide 3: CHAPTER OUTLINE
	Slide 4: INTRODUCTION
	Slide 5: INTRODUCTION
	Slide 6: Overview of Computers and History of Programming Language
	Slide 7: Basic Operation of a Computer
	Slide 8: Basic Operation of a Computer
	Slide 9: Language of a Computer
	Slide 10: Language of a Computer
	Slide 11: Types of Programming Language
	Slide 12: Types of Programming Language
	Slide 13: Types of Programming Language
	Slide 14: c++ Relationship Between Programs, Compiler, Interpreter and Assembler
	Slide 15: Differences Between Programs and Programming
	Slide 16: The Importance of Computer Programming
	Slide 17: The Importance of Writing a Good Program
	Slide 18: The Importance of Writing a Good Program
	Slide 19: The Importance of Writing a Good Program
	Slide 20: C++ Program Structure
	Slide 21: C++ Program Structure
	Slide 22: The Flow of Program Execution
	Slide 23: Comments
	Slide 24: Pre-processor Directive
	Slide 25: Function
	Slide 26: Function
	Slide 27: Function
	Slide 28: Program Development Life Cycle
	Slide 29: Program Development Life Cycle
	Slide 30: step 1 : Analysis
	Slide 31: step 1 : Analysis
	Slide 32: step 1 : Analysis
	Slide 33: step 2 : Design
	Slide 34: step 2 : Design
	Slide 35: step 2 : Design
	Slide 36: step 2 : Design
	Slide 37: step 2 : Design – pseudo code
	Slide 38: step 2 : Design – pseudo code
	Slide 39: step 2 : Design – flow chart
	Slide 40: step 2 : Design – flow chart
	Slide 41: step 2 : Design – flow chart
	Slide 42: step 2 : Design – flow chart
	Slide 43: step 2 : Design – flow chart
	Slide 44: step 2 : Design – flow chart
	Slide 45: step 3 : Implementation/Coding
	Slide 46: step 3 : Implementation/Coding
	Slide 47: step 4 : Testing/Debugging
	Slide 48: step 5 : Maintenance
	Slide 49: exercise
	Slide 50: Question 1
	Slide 51: Question 1
	Slide 52: Question 1
	Slide 53: Question 2
	Slide 54: Question 3
	Slide 55: Question 4
	Slide 56: Question 4
	Slide 57: Question 5
	Slide 58: Question 5
	Slide 59: Question 5

